Exercise 7.2.5

A boat, coasting through the water, experiences a resisting force proportional to v^{n}, v being the boat's instantaneous velocity. Newton's second law leads to

$$
m \frac{d v}{d t}=-k v^{n}
$$

With $v(t=0)=v_{0}, x(t=0)=0$, integrate to find v as a function of time and v as a function of distance.

Solution

Solve the ODE by separating variables.

$$
\frac{d v}{v^{n}}=-\frac{k}{m} d t
$$

Integrate both sides.

$$
\begin{equation*}
\int v^{-n} d v=\int-\frac{k}{m} d t \tag{1}
\end{equation*}
$$

Suppose first that $n \neq 1$.

$$
\frac{1}{-n+1} v^{-n+1}=-\frac{k}{m} t+C_{1}
$$

Multiply both sides by $-n+1$, using a new constant C_{2} for $C_{1}(-n+1)$.

$$
v^{1-n}=-\frac{k}{m}(1-n) t+C_{2}
$$

Now apply the initial condition $v(0)=v_{0}$ to determine C_{2}.

$$
v_{0}^{1-n}=C_{2}
$$

Then the previous equation becomes

$$
v^{1-n}=-\frac{k}{m}(1-n) t+v_{0}^{1-n} .
$$

Take the $1-n$ root of both sides.

$$
v(t)=\left[-\frac{k}{m}(1-n) t+v_{0}^{1-n}\right]^{1 /(1-n)}
$$

Suppose secondly that $n=1$. Then equation (1) becomes

$$
\ln v=-\frac{k}{m} t+C_{3} .
$$

Apply the initial condition $v(0)=v_{0}$ now to determine C_{3}.

$$
\ln v_{0}=C_{3}
$$

Substitute this result into the previous equation.

$$
\ln v=-\frac{k}{m} t+\ln v_{0}
$$

Exponentiate both sides.

$$
\begin{aligned}
v(t) & =e^{-k t / m+\ln v_{0}} \\
& =e^{-k t / m} e^{\ln v_{0}} \\
& =v_{0} e^{-k t / m}
\end{aligned}
$$

Therefore, as a function of time, the boat velocity is

$$
v(t)= \begin{cases}v_{0} e^{-k t / m} & n=1 \\ {\left[-\frac{k}{m}(1-n) t+v_{0}^{1-n}\right]^{1 /(1-n)}} & n \neq 1\end{cases}
$$

Use the chain rule to write v in terms of x.

$$
\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=\frac{d v}{d x} v
$$

Substitute this formula into the ODE.

$$
m v \frac{d v}{d x}=-k v^{n} .
$$

Separate variables once again.

$$
v^{1-n} d v=-\frac{k}{m} d x
$$

Integrate both sides.

$$
\begin{equation*}
\int v^{1-n} d v=\int-\frac{k}{m} d x \tag{2}
\end{equation*}
$$

Suppose first that $n \neq 2$.

$$
\frac{1}{2-n} v^{2-n}=-\frac{k}{m} x+C_{3}
$$

Multiply both sides by $2-n$, using a new constant C_{4} for $C_{3}(2-n)$.

$$
v^{2-n}=-\frac{k}{m}(2-n) x+C_{4}
$$

Use the two initial conditions, $v(0)=v_{0}$ and $x(0)=0$, to determine C_{4}.

$$
v_{0}^{2-n}=C_{4}
$$

Then the previous equation becomes

$$
v^{2-n}=-\frac{k}{m}(2-n) x+v_{0}^{2-n} .
$$

Take the $2-n$ root of both sides.

$$
v(x)=\left[-\frac{k}{m}(2-n) x+v_{0}^{2-n}\right]^{1 /(2-n)}
$$

Suppose secondly that $n=2$. Then equation (2) becomes

$$
\ln v=-\frac{k}{m} x+C_{5} .
$$

Use the two initial conditions, $v(0)=v_{0}$ and $x(0)=0$, to determine C_{5}.

$$
\ln v_{0}=C_{5}
$$

The previous equation becomes

$$
\ln v=-\frac{k}{m} x+\ln v_{0} .
$$

Exponentiate both sides.

$$
\begin{aligned}
v(x) & =e^{-k x / m+\ln v_{0}} \\
& =e^{-k x / m} e^{\ln v_{0}} \\
& =v_{0} e^{-k x / m}
\end{aligned}
$$

Therefore, as a function of position, the boat velocity is

$$
v(x)=\left\{\begin{array}{ll}
v_{0} e^{-k x / m} & n=2 \\
{\left[-\frac{k}{m}(2-n) x+v_{0}^{2-n}\right]^{1 /(2-n)}} & n \neq 2
\end{array} .\right.
$$

